AI in Health, Profiling and Data Protection
tensions between technological innovation, biolaw and fundamental rights
DOI:
https://doi.org/10.62530/rbdc25p303Keywords:
Artificial Intelligence, LGPD, Biolaw, Profiling, Sensitive DataAbstract
Context: The advancement of artificial intelligence (AI) in healthcare brings promises of more accurate diagnoses and personalized treatments, but also generates significant legal and bioethical tensions. The risks arising from these technologies demand constant revisions of the regulatory framework surrounding them. This article examines one of these risks by investigating the potential insufficiency of the Brazilian General Data Protection Law (LGPD) to address challenges associated with the use of sensitive data and profiling techniques, which pose threats to privacy protection, equality, and the free development of personality. Objective: The aim of this study is to critically analyze the alleged algorithmic neutrality, identify weaknesses in the current regulation, and propose a consequentialist interpretation of the concept of personal data, integrating it into the principles of Biolaw, particularly the precautionary principle. Methods: The methodology adopted was deductive, based on documentary analysis and literature review, both national and international, as well as comparative examination of foreign regulatory instruments such as the General Data Protection Regulation (GDPR) and the Artificial Intelligence Act of the European Union. Results: The findings show that the LGPD presents significant gaps, notably the exclusion of anonymized data from its scope, which undermines personality protection, as well as the absence of clear restrictions on automated decisions with significant effects. Risks also emerge from the technical and economic opacity of AI systems, which enable subtle forms of discrimination and hinder accountability. Conclusions: It is concluded that Brazilian law, by privileging a reactive control logic, does not provide sufficient safeguards to address the challenges of the digital age. It is therefore essential to align the LGPD with a preventive and consequentialist approach, to strengthen its integration with Biolaw principles, and to ensure robust mechanisms for transparency, auditability, and human intervention in healthcare AI systems.
References
BECK, Ulrich. Sociedade de Risco: rumo a uma outra modernidade. 2ª ed. São Paulo: Editora 34, 2011.
BELL, Felicity, et al. AI decision-making and the courts – a guide for judges, Tribunal Members and Court Administrators. Aija, Australia, 2002. Disponível em: <https://aija.org.au/publications/ai-decision-making-and-the-courts-a-guide-for-judges-tribunal-members-and-court-administrators/>. Acesso em: 22/09/2025.
BIONI, Bruno Ricardo. Proteção de Dados Pessoais - A Função e os Limites do Consentimento. 3ª ed. São Paulo: Forense, 2021.
BORGESIUS, Frederik Zuiderveen. Singling out people without knowing their names: behavioural targeting, pseudonymous data, and the new Data Protection Regulation. Computer Law & Security Review, v. 32, n. 2, 2016, p. 256-271. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0267364915001788>. Acesso em: 22/09/2025. DOI: https://doi.org/10.1016/j.clsr.2015.12.013
BRASIL. Assembleia Nacional Constituinte. Constituição da República de 1988. Disponível em: <https://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm>. Acesso em: 22/09/2025.
BRASIL. Congresso Nacional. Decreto Legislativo nº 1, de 3 de fevereiro de 1994. Convenção-Quadro das Nações Unidas sobre Mudança do Clima. Disponível em: <https://www2.camara.leg.br/legin/fed/decleg/1994/decretolegislativo-1-3-fevereiro-1994-358285-publicacaooriginal-1-pl.html>. Acesso em: 22/09/2025.
BRASIL. Congresso Nacional. Lei nº 8.078, de 11 de setembro de 1990. Código de Defesa do Consumidor (CDC). Disponível em: <https://www.planalto.gov.br/ccivil_03/leis/l8078compilado.htm>. Acesso em: 22/09/2025.
BRASIL. Congresso Nacional. Lei nº 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Disponível em: <https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm>. Acesso em: 22/09/2025.
BRASIL. Congresso Nacional. Projeto de Lei 2.338. Disponível em: <https://www25.senado.leg.br/web/atividade/materias/-/materia/157233>. Acesso em: 22/09/2025.
BRASIL. Supremo Tribunal Federal (Tribunal Pleno). Referendo na medida cautelar na Ação Direta de Inconstitucionalidade 6.387. Relatora: Min. Rosa Weber, 07/05/2020. Brasília: STF, 2020. Disponível em: <https://redir.stf.jus.br/paginadorpub/paginador.jsp?docTP=TP&docID=754357629>. Acesso em: 22/09/2025.
BURRELL, Jenna. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, January–June, 2016. Disponível em: <https://journals.sagepub.com/doi/10.1177/2053951715622512>. Acesso em: 22/09/2025. DOI: https://doi.org/10.1177/2053951715622512
DURANTE, Massimo. The Online Construction of Personal Identity Through Trust and Privacy. Information, v. 2, n. 4, out. 2011. Disponível em: <https://www.mdpi.com/2078-2489/2/4/594>. Acesso em: 22/09/2025. DOI: https://doi.org/10.3390/info2040594
FLORIDI, Luciano. Information: a very short introduction. Oxford: Oxford University Press, 2010. DOI: https://doi.org/10.1093/actrade/9780199551378.001.0001
GARCIA, Diego. Pensar a bioética: metas e desafios. São Paulo: São Camilo; Loyola, 2010.
GARLA, Satish et al. What Do Your Consumer Habits Say About Your Health? Using Third-Party Data to Predict Individual Health Risk and Costs. SAS Global Forum, 2013, Disponível em: <http://support.sas.com/resources/papers/proceedings13/170-2013.pdf>. Acesso em: 22/09/2025.
GUTWIRTH, Serge; HILDEBRANDT, Mireille. Some Caveats on Profiling. In: GUTWIRTH, Serge; POULLET, Yves; DE HERT, Paul. (Eds.). Data Protection in a Profiled World. Netherlands: Springer, 2010. Disponível em: <https://link.springer.com/chapter/10.1007/978-90-481-8865-9_2>. Acesso em: 22/09/2025. DOI: https://doi.org/10.1007/978-90-481-8865-9_2
HILDEBRANDT, Mireille. Defining Profiling: A New Type of Knowledge? In: HILDEBRANDT, Mireille; GUTWIRTH, Serge (Eds.). Profiling the European Citizen: Cross-Disciplinary Perspectives. Cham: Springer Science, 2008. Disponível em: <https://link.springer.com/chapter/10.1007/978-1-4020-6914-7_2>. Acesso em: 22/09/2025. DOI: https://doi.org/10.1007/978-1-4020-6914-7_2
LARSON, Jeff; MATTU, Surya; KIRCHNER Lauren; ANGWIN, Julia. How We Analyzed the COMPAS Recidivism Algorithm. Nova Iorque: ProPublica, 2016. Disponível em: <https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm>. Acesso em: 22/09/2025.
MACHADO, Diego Carvalho; MENDES, Laura Schertel. Tecnologias de perfilamento e dados agregados de geolocalização no combate à Covid-19 no Brasil. Revista Brasileira de Direitos Fundamentais & Justiça, Belo Horizonte, v. 14, n. 1, p. 105-148, nov. 2020. Disponível em: <https://dfj.emnuvens.com.br/dfj/article/view/1020/998>. Acesso em: 22/09/2025. DOI: https://doi.org/10.30899/dfj.v0i0.1020
MARTINS, Pedro Bastos Lobo Profiling na Lei Geral de Proteção de Dado: desenvolvimento da personalidade em face da governamentalidade algorítmica. 1ª ed. São Paulo: Editora Foco, 2022.
MELLO, Celso Antônio Bandeira de. O conteúdo jurídico do princípio da igualdade. 3ª ed. São Paulo: Malheiros, 2014.
MOREIRA, Adilson José. Tratado de Direito Antidiscriminatório. São Paulo: Editora Contracorrente, 2020, edição digital.
NATIONAL COMMISSION FOR THE PROTECTION OF HUMAN SUBJECTS OF BIOMEDICAL AND BEHAVIORAL RESEARCH. The Belmont Report. 1978. Disponível em: <https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html>. Acesso em: 22/09/2025.
NAVES, Bruno Torquato de Oliveira; SÁ, Maria de Fátima Freire. Bioética e Biodireito. 6ª ed. São Paulo: Editora Foco, 2023, edição digital.
O'NEIL, Cathy. Algoritmos de Destruição em Massa. 1ª ed. São Paulo: Rua do Sabão, 2021.
ORGANIZAÇÃO MUNDIAL DA SAÚDE. Ethical use of artificial intelligence: principles, guidelines, frameworks and human rights standards. Disponível em: <https://www.jstor.org/stable/resrep35680.8?seq=1>. Acesso em: 22/09/2025.
PASQUALE, Frank. The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge: Harvard University Press, 2015. DOI: https://doi.org/10.4159/harvard.9780674736061
PEARL, Judea. The Book of Why: The New Science of Cause and Effect. Los Angeles: Ingram Publisher Services, 2017.
PINTO, Paulo Mota. O Direito ao Livre Desenvolvimento da Personalidade. In: PÁDUA RIBEIRO, Antônio de et al. Coimbra: Coimbra Editora, 1999.
REALE, Miguel. Filosofia do direito. 14ª ed. São Paulo: Saraiva, 1999.
SANTOS, Boaventura de Souza. A gramática do tempo. São Paulo: Cortez, 2006.
SOUSA, Maria Eliane Alves de. Direitos humanos e princípios comuns entre inteligência artificial e direito à saúde. Cadernos Ibero-Americanos de Direito Sanitário. 2020 jul./set.; 9(3): 26-48. Disponível em: <https://www.cadernos.prodisa.fiocruz.br/index.php/cadernos/article/view/658>. Acesso em: 22/09/2025. DOI: https://doi.org/10.17566/ciads.v9i3.658
UNIÃO EUROPEIA. Artificial Intelligence Act (AI Act). Disponível em: <https://artificialintelligenceact.eu/article/5/#weglot_switcher>. Acesso em: 22/09/2025.
UNIÃO EUROPEIA. General Data Protection Regulation (GDPR). Disponível em: <https://gdpr-info.eu/>. Acesso em: 22/09/2025.
WACHTER, Sandra. Affinity Profiling and Discrimination by Association in Online Behavioural Advertising. Berkeley Technology Law Journal, v. 35, n. 2, p. 1-74, 2019. Disponível em: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3388639>. Acesso em: 22/09/2025.
WHITE, Ryen; DORAISWAMI, Murali; HORVITZ, Eric. Detecting neurodegenerative disorders from web search signals. Digital Medicine, v. 8 n. 1, p. 1-4, 2015. Disponível em: <https://www.nature.com/articles/s41746-018-0016-6#publish-with-us>. Acesso em: 22/09/2025.
YUSTE, Rafael et al. Four ethical priorities for neurotechnologies and AI. Nature, v. 551, n. 7679, p. 159-163, 2017. Disponível em: <https://www.nature.com/articles/551159a>. Acesso em: 22/09/2025. DOI: https://doi.org/10.1038/551159a
Downloads
Published
Data Availability Statement
No quantitative research data was collected.